报告(一)
报告题目:Group-Average and Convex Clustering for Partially Heterogeneous Linear Regression
报告人:林路 教授
报告摘要:
In this paper, a subgroup least squares and a convex clustering are introduced for inferring a partially heterogenous linear regression that has potential application in the areas of precision marketing and precision medicine. The homogenous parameter and the subgroup-average of the heterogenous parameters can be consistently estimated by the subgroup least squares, without need of the sparsity assumption on the heterogenous parameters. The heterogenous parameters can be consistently clustered via the convex clustering. Unlike the existing methods for regression clustering, our clustering procedure is a standard mean clustering, although the model under study is a type of regression, and the corresponding algorithm only involves low dimensional parameters. Thus, it is simple and stable even if the sample size is large. The advantage of the method is further illustrated via simulation studies and the analysis of car sales data.
报告时间:12月8日上午10:10-11:00
报告地点:科技楼二楼北会议室
主办单位:统计学院
报告人简介:
林路是山东大学金融研究院教授、博士生导师、副院长;在南开大学获得博士学位后,先在南开大学任教,然后到山东大学任教至今;在高维统计、非参数和半参数统计以及金融统计等方面,取得许多重要的研究成果,在国际统计学和机器学习顶级刊物Annals of Statistics, Journal of Machine Learning Research和其它重要期刊发表研究论文90余篇;是国家973项目、国家创新群体和教育部创新团队的核心成员,教育部应用统计专业硕士教育指导委员会成员,山东省应用统计学会副会长,山东省政府参事;主持过多项国家自然科学基金课题、博士点专项基金课题、山东省自然科学基金重点项目等。
报告(二)
报告题目:A new robust regression model: Type II multivariate t distribution with applications
报告人: 田国梁 教授
报告摘要:
Motivated by a real data analysis, we in this paper propose a new multivariate t (MVT) distribution via stochastic representation instead of the joint density function. This new distribution is called Type II MVT distribution, which possesses several remarkable features including (1) all components follow univariate t-distributions with different degrees of freedom, (2) it could include components following the multivariate normal distributions when the corresponding degrees of freedom approach to infinity, and (3) it could contain independent/uncorrelated components. Because of avoiding three drawbacks associated with the traditional MVT distribution, this new distribution is more flexible in model specification and applicable to any high-dimensional data. Important distributional properties are explored and useful statistical methods are developed. Simulation studies are performed to evaluate the proposed methods. Two biomedical data sets are used to compare the proposed Type II MVT distribution with the traditional MVT distribution.
报告时间:12月8日上午11:00-11:50
报告地点:科技楼二楼北会议室
主办单位:统计学院
报告人简介:田国梁,现任南方科技大学数学系统计学正教授、博士生导师。田教授于1988年获得武汉大学统计学硕士学位、于1998年获得中国科学院应用数学研究所统计学博士学位。从1998至2002年, 他分别在北京大学概率统计系和美国田纳西州孟斐斯市的 St. Jude 儿童研究医院生物统计系从事博士后研究, 2002年至2008年他在美国马里兰大学Greenbaum 癌症中心任 Senior Bio-statistician。2008年至2016年他在香港大学统计及精算学系任副教授、博士生导师。田教授是国际统计学会 (ISI) 当选会员, 他担任 Computational Statistics & Data Analysis, Statistics and Its Interface 等四个国际统计学杂志的副主编。他主要的研究领域是生物统计, 社会统计和计算统计。目前的研究方向包括多元零膨胀计数数据分析、不完全分类数据分析和敏感性问题抽样调查。到目前为止,他在国际顶尖生物统计学期刊 Statistical Methods in Medical Research, Statistics in Medicine, Biometrics 发表论文13篇, 在其他统计学期刊发表论文80余篇。他在美国著名出版社 John Wiley & Sons 和 Chapman & Hall/CRC 出版英文专著3部, 且在中国的科学出版社出版中文专著1部和英文教科书1本。2017年度他的研究课题<<MM算法中的几类问题之研究及其应用>>获得国家自然科学基金面上项目的5A资助。